Detail Cantuman Kembali

XML

Utilization of Chromium Waste from Tanning Industry as Ceramic Glaze


UTILIZATION OF CHROMIUM WASTE FROM TANNING INDUSTRY
AS CERAMIC GLAZE


Thesis Summary
In partial fulfillment of the requirements
for the Master Degree

Master of Engineering System
Study Program of Mechanical Engineering
Faculty of Engineering
















By:
Lusia Permata Sari Hartanti
09/305579/PTK/6801


Submitted To
THE GRADUATE SCHOOL
GADJAH MADA UNIVERSITY
YOGYAKARTA
2011








i
















Ringkasan Tesis











































ii












CONTENTS



COVER……………………………………………………………………. i
APPROVAL PAGE………………………………………………………... ii
ABSTRACT…….…………………………………………………………. iii
CONTENTS……………………………………………………………….. iv
BAB I. INTRODUCTION…………………………………………………. 1
BAB II. LITERATURE REVIEW ………………………………………… 2
BAB III. RESEARCH METHODOLOGY………………………………… 3
BAB IV. RESULT AND DISCUSSION..………………………………….. 5
BAB V. SUMMARY AND SUGGESTION……….………………………. 10


REFERENCE………………………………………………………………. 10


























iii









UTILIZATION OF CHROMIUM WASTE FROM TANNING INDUSTRY
AS CERAMIC GLAZE

By:
Lusia Permata Sari Hartanti
09/305579/PTK/6801

ABSTRACT

Waste from tanning industry contains chromium. Inappropriate waste
handling can cause environmental pollution because the waste is hazardous and
toxic materials, where the concentration of chromium in waste was 56314.026
ppm. Chromium waste has potential as stain on ceramic industry and been known
as chrome green. The objectives of research are to investigate leach ability of
immobilized chromium and to investigate the glaze quality and its characteristic.
The research was conducted according to the variation of the chromium
waste amount in the glaze mixture. The basic glaze composition was 35% of
feldspar, 35% of borax, 15% of kaolin and 15% of quartz sand. Chromium waste
as much as 0%, 15%, 30% and 45% was added to the basic glaze mixture. Glaze
was applied by brush on the surface of ceramic body and fired at 1100 °C for 8
hours.
Based on TCLP test, the concentration of chromium was ranging from 0
ppm - 2.960 ppm. The more chromium waste was added, the chromium
concentration increased. Based on tank leaching test, chromium concentration of
D sample in the leachate was very low, ranging from 0.08 ppm – 0.13 ppm. The
chromium concentration of TCLP and tank leaching test was lower than allowable
limit (5 ppm) according to Peraturan Pemerintah No 85/1999. It means the
immobilization of chromium was successful. The result of research showed that
the hardness of glaze was 8 of Mohs scale, 6 of Mohs scale, 5 of Mohs scale, and
4 of Mohs scale. The more percentage of chromium waste was added, the lower
hardness of glaze would be obtained. However, the hardness of each sample still
meet the quality standard of SNI 15-4249-1996, that is minimum 4 of Mohs scale.
The addition of chromium waste as much as 0%, 15%, 30% and 45% resulted
variations of green colour. The more chromium waste was added, the green colour
of glaze was darker.

Keywords: chromium waste, hardness, leaching, colour












iv









CHAPTER I
INTRODUCTION


The developments of industries are growing rapidly. The industry
produces products that are useful for human needs. But the industry also generates
waste, whether solid, liquid or gas. Sometimes those wastes are grouped into toxic
and hazardous materials waste. Toxic and hazardous waste must be treated or
reduced the levels before being discharged into the environment. According to
Peraturan Pemerintah No. 85/1999, toxic and hazardous waste management is a
series of activities that include reduction, storage, collection, transportation,
utilization, processing, and toxic and hazardous landfill.
Based on assessments that conducted by government to member of
PROPER (Program Penilaian Peringkat Kinerja Perusahaan dalam Pengelolaan
Lingkungan Hidup) showed that the amount of toxic and hazardous waste from
the mining, energy, oil and gas sector and manufacturing and agribusiness sectors
was 6.734.699,84 ton, 10.898.397,41 ton, 11.091.117 ton, and 19.430.748,38 ton
in 2006, 2007, 2008 and 2009. From these data show that the amount of toxic and
hazardous waste is increasing every year (Kementerian Lingkungan Hidup, 2009).
Yogyakarta as one of the city in Indonesia which has industrial activities
also generate toxic and hazardous waste, especially toxic and hazardous waste that
produced from leather tanning industry, textile industry, and electroplating
industry. That waste contains heavy metals, such as arsenic, cadmium, chromium,
copper, lead and zinc.
Chromium waste can be utilized as a coloring agent in industries such as
ceramics, tile, ornamental and household ceramic. A use of the dye in the ceramic
is to add the beauty of products and to increase the strength of the surface/ceramic
body by water infiltration








1









CHAPTER II
LITERATURE REVIEW


Sagala et al. (1994) conducted research on colored glaze from sludge of
electroplating manufacture, which has a chromium content of 20-30%. After
processing of chemical and physical properties, the sludge could be used as
ceramic colorant. The method of colored glaze making was performed by varying
the composition. The sludge was calcined at 900 °C to obtain green colour. The
brown color was made by adding the other metal oxide as an additive and
calcinations was performed at 1280 °C
Hamzah et al. (1992) investigated the use of chromium from tannery waste
for ceramic dye. Utilization of this chromium used a small-scale extraction tool of
chromium. This extraction tool could be used to process the dry leather waste to
produce chromium oxide. The chromium oxide could be used as a dye, both by
colored glaze or decoration under glaze at 1250 °C.
Rifat and Yusdi (2002) investigated the waste utilization from PT.
Krakatau Steel as ceramic coloring material. Waste treatment result of PT.
Krakatau Steel contained many elements of metal. The largest content was iron
oxide (Fe2O3) which equal to 97.67%. Dark colour was obtained from iron oxide
or the oxide mixture. The color of these ceramic could be generated by using m-
frit glaze (fired at 900 °C) and zinc glaze (fired at 1250 °C)
Wenas and Subari (2007) investigated the utilization of silica powder from
beneficiation of natural gas drilling waste in Wonosobo region as glaze material.
This material waste must be beneficiated before used as ceramic glaze. From the
beneficiation, three kind of glaze composition were experimented using the 20-
30% of pure silica, 60-70% of frit Pb3O4, 10% of kaolin and 5% of dextrin as
binder material and fired at 800 and 900 °C. From the experiment that consisted
of 20% of silica, 70% of Pb3O4 and 10% of kaolin showed good glaze
appearance that means no glazes defects like crack, pinhole and crawling.
Nuryanto and Tri (2008) investigated the industrial solid waste from
Palimanan. About 20% of the material of production had not been utilized



2









optimally. Mineral composition, volcanic glass (40-60%) and feldspar (23-50%),
has potential to be used as raw material of non Pb glaze. The result of the
experiment showed that by addicting a number of limestones and additive
material, the industrial waste of dimension stone may be used as raw material of
non Pb glaze raw material. Glaze formula at 1280 °C produced transparent base
glazure. Maximum addition of 20% of borax produced a good glazzy color non Pb
at 1000 °C.
Based on Nuryanto (2008) and Subari (2006) in Nugrahesti (2010), the
chemical composition of ceramic material is described in Table 2.1.
Table 2.1 Composition of Ceramic Material













(source: secondary data *) Nuryanto, Desember 2008, **) Subari, Desember
2006 ) in Nugrahesti, 2010).




















3









CHAPTER III
RESEARCH METHODOLOGY
3.1 Research Material
1. Chromium waste was from tanning industry, PT. Adi Satria Abadi, Bantul.
2. Quartz Sand was from Balai Besar Keramik, Bandung..
3. Feldspar was from Balai Besar Keramik, Bandung.
4. Kaolin was from Balai Besar Keramik, Bandung.
5. Borax was from Toko Aneka Sari, Pekalongan.
6. Ceramic Body was made from Singkawang Clay
7. Tap water and distilled water were from Energy Conservation and Pollution
Prevention Laboratory of Chemical Engineering Department, Faculty of
Engineering Gadjah Mada University.
3.2 Research Procedure
3.2.1 Procedure of Initial Experiment
1. Cr Waste Identification.
The goal of Cr waste identification was to know the concentration of Cr, Fe
and Ti. Identification used AAS (Atomic Adsorption Spectrofotometry)
equipment.
2. Chromium Waste Preparation
The steps of chromium waste preparation were:
a) Drying process
This process aims were to reduces the water content in the waste.
Chromium waste was placed in a baking pan in order to the process of
drying for 4.5 hours at 110 °C.
b) Refining Process
Refining process was done using mortar. Mortar was used to smooth
chromium waste that still a chunk, so it will have fine grain.
c) Sieving Process
The sieving process was done using a sieve with size 60.
3. Glaze Preparation and Firing




4









Basic glaze compositions were 55% of feldspar, 15% of kaolin, 15% of quartz
sand and 15% of salt. Chromium wastes as much as 0%, 15%, 30% and 45%
were added into the basic glaze composition. Those samples were fired at 900
°C, 1000 °C and 1100 °C.
4. Analysis of Preliminary Research
After firing process finished, the samples were analyzed to know the
characteristics of product.
3.2.2 Procedure of Experimental Step
1. Design of Glazing Process
The formula of basic glaze is 35% of feldspar, 15% of kaolin, 15% of quartz
sand and 35% of borax.
A glaze composition which was used for experiment was:
• A sample composition: 100 % of basic glaze composition and 0 % of
chromium waste.
• B sample composition: 100 % of basic glaze composition and 15 % of
chromium waste.
• C sample composition: 100 % of basic glaze composition and 30 % of
chromium waste.
• D sample composition: 100 % of basic glaze composition and 45 % of
chromium waste.
2. Glazing and Firing Process
a. Glaze materials (feldspar, kaolin, quartz sand and borax) and chromium
waste was weighed according to their composition. Chromium waste as
much as 0%, 15%, 30%, and 45% was added to the mixture.
b. When all ingredients had been mixed then added water proportional to the
weight of ingredients and stirred the mixture until homogeneous.
c. Ceramic body was cleaned and then performed glazing process on the
surface of ceramic body with a brush and then dried.
d. Samples that had been dried were fired at 1100 °C for 8 hours with 45
minutes as holding time at the peak temperature.
e. After the furnace was cold, ceramics could be removed.


5









CHAPTER IV
RESULT AND DISSCUSION
4.1 Chromium Waste Identification
The waste identification was conducted to measure the concentration of
heavy metal using AAS (Atomic Adsorption Spectrophotometry). The result
of chromium waste identification is shown in Table 4.1.
Table 4.1 Chromium Waste Characteristic





(Source: Primary data, 2011)
*) ND = Not Detected
The concentration of chromium in the waste was 56314.026 ppm. It means
that the concentration did not meet with the quality standard of Peraturan
Pemerintah No. 85/1999, which is 5 ppm. So chromium waste should be treated
before being released to environment.
4.2 The Effect of Chromium Waste to Melting Point
In the first series of preliminary research, the effect of chromium waste
addition in the glaze mixture to melting point was investigated. The basic glaze
compositions were 55% of feldspar, 15% of kaolin, 15% of quartz sand and 15%
of salt. Chromium waste as much as 0%, 15%, 30% and 45% was added to basic
glaze mixture. The result of each firing is shown in Table 4.2.
Table 4.2 The Effect of Chromium Waste to Melting Point.









4.3.Comparison between Chromium Waste and Chromium Non Waste Usage
In the second series of preliminary research, the application of chromium
non waste as stain in glaze mixture was investigated. The result is shown in Table
4.3.
Table 4.3. Comparison between chromium waste and chromium non waste at
1100 °C










4.4 Glaze Composition
In the research, basic glaze was made by mixing 35% of feldspar, 35% of
borax, 15% of kaolin and 15% of quartz sand. Chromium waste as much as 0%,
15%, 30% and 45% were added. After glazing, the ceramic body was fired at
1100 °C for 8 hours.
Kaolin served as a source of alumina and silica in the glaze, this
component allows the glaze to stick to the body and not run off when the glaze is
heated. Quartz sand was a source of silica in the glaze mixture. Silica prevented
cracking, rupture or explodes during drying or firing. Feldspar was a flux agent.
Feldspar added strength, hardness, glossy of glaze. Borax was a very strong flux
and solvent for materials used in glaze mixture. It helped in the healing of defects
due the formation of scratches, cracks or pitting in the glaze surface prior to the
maturity. Chromium served as a stain in the glaze mixture and was used for
achieving green colour.
4.5 Hardness Test
Hardness test was done using Mohs method. Figure 4.1 shows the
relationship between hardness and chromium composition. The more percentage
of chromium waste decreased the hardness of glaze. However, the hardness of
each sample still meets the quality standard of SNI 15-4249-1996.


7











10

8
6
4
2
0

hardness

A (0% of Cr) B (15% of

C (30% of

D (45% of

Cr) Cr)
Cr Composition

Cr)


Figure 4.1 Glaze Hardness
4.6 Leaching Test
4.6.1 Toxicity Characteristic Leaching Procedure (TCLP)
This analysis was conducted to determine the release level of chromium
from the glaze. Figure 4.2 shows the relationship between chromium
concentration and chromium composition. The chromium concentration was
lower than allowable limit (5 ppm) according to Peraturan Pemerintah No.
85/1999. It means the immobilization of chromium was successful.
6
5

4

Cr Concentration
(ppm)

3
2
1
0
A (0% of Cr) B (15% of Cr) C (30% of Cr) D (45% of Cr)
Cr Composition
Figure 4.2 Chromium Concentration in The Leachate by TCLP
4.6.2 Tank Leaching Test
Tank leaching test was conducted to investigate the behavior of
leaching chromium from ceramic body in water. The tank leaching test
investigated the leaching chromium from D sample. A ceramic body (D sample)
was immersed with distilled water in the vessel for 7 days. The result of tank
leaching test is shown in Figure 4.3. The chromium concentration was lower than
allowable limit (5 ppm) according to Peraturan Pemerintah No. 85/1999. It means
that chromium was immobilized in the glaze.

8












5.00
4.50
4.00
3.50

3.00
2.50
2.00
1.50
1.00
0.50
0.00

Cr Concentartion
Allowable limit (No.85/1999 of
Government Regulation)

1st day (April, 27th 3rd day (April, 29th

5th day (May, 1st

7th day (May, 3rd

2011)

2011)

2011)

2011)

Day
Figure 4.3 Chromium Concentration of D sample in The Leachate by Tank
Leaching Test
4.7 Colour Appearance
The addition of chromium waste resulted variations of green color. The
more chromium waste was added, the green colour of glaze was more
concentrated. The colour of glaze is shown in Table 4.4.
Table 4.4 Colour Appearance of Glaze














(Source: primary data, 2011)











9










CHAPTER V
CONCLUSION AND SUGGESTION
5.1 Conclusion
1. Based on TCLP test and tank leaching test, chromium concentration in the
leachate was very low, ranging 0-2.960 ppm.
2. The hardness of glaze was 8, 6, 5, 4 of Mohs scale The addition of chromium
waste resulted variations of green color. The more chromium waste was
added, the green colour of glaze was darker.
5.2 Suggestion
1. The research development can be conducted by doing the variation of glaze
formula, material, firing temperature and holding time. Investigating the
other colour that can be obtained from chromium waste.
2. Investigating the influence of the gas production from the ceramic firing to
environment.
REFERENCE
Badan Standardisasi Nasional, 1996, SNI 15-4249-1996: Keramik Hias Jenis
Gerabah Padat, Badan Standardisasi Nasional, Jakarta.
Hamzah, F., Sarwendah and Suhanda, 1992, Pemanfaatan Krom dari Limbah
Industri Penyamakan Kulit Untuk Bahan Pewarna Keramik, Jurnal Keramik
dan Gelas Indonesia, Volume I No.1, Bandung.
Menteri Negara Lingkungan Hidup, 2009, Status Lingkungan Hidup,
Kementrian Lingkungan Hidup, Jakarta.
Nugrahesti, 2010, Immobiliassi Logam Berat Pada Limbah Sludge Bahan
Berbahaya dan Beracun (B3) dan Potensi Prodeksnya Sebagai Bahan
Keramik, Magister Sistem Teknik Universitas Gadjah Mada, Yogyakarta.
Nuryanto and Tri, E., 2008, Prospek Limbah Industri Batu Tempel sebagai Bahan
Mentah Glasir Non-Timbal, Balai Besar Keramik, Bandung.
Presiden Republik Indonesia, 1999, Peraturan Pemerintah No.85 Tahun 1999
tentang Pengelolaan Limbah Bahan Berbahaya dan Beracun, Menteri
Sekretaris Negara, Jakarta.
Rifat, A. and Yusdi I., 2002, Pemanfaatan Limbah PT. Krakatau Steel Sebagai
Bahan Pewarna Keramik, Jurusan Teknik Kimia, Universitas Jendral Ahamad
Yani, Cimahi.
Sagala, M., Soesilowati and Suhanda, 1994, Pembuatan Glasir Berwarna
dari Limbah Lumpur Electroplating, Jurnal Balai Besar Keramik Volume 3
No. 2, Bandung.
Wenas and Subari, 2007, Pemanfaatan Serbuk Silika Hasil Pengolahan Limbah
Pengeboran Gas Alam di Dieng sebagai Bahan Glasir Keramik, Balai Besar
Keramik, Bandung.

10






PEMANFAATAN LIMBAH KROMIUM DARI INDUSTRI
PENYAMAKAN KULIT SEBAGAI GLASIR


Ringkasan Tesis
Untuk memenuhi sebagian persyaratan
Mencapai derajat sarjana S-2


Magister Sistem Teknik
Program Studi Teknik Mesin
Fakultas Teknik


















Diajukan Oleh:
Lusia Permata Sari Hartanti
09/305579/PTK/6801


Kepada
PROGRAM PASCA SARJANA
UNIVERSITAS GADJAH MADA
YOGYAKARTA








i











Ringkasan Tesis

PEMANFAATAN LIMBAH KROMIUM DARI INDUSTRI
PENYAMAKAN KULIT SEBAGAI GLASIR













































ii










DAFTAR ISI



SAMPUL…………………………………………………………………… i
LEMBAR PENGESAHAN……………………………………………….... ii
DAFTAR ISI………………………………………………………………... iii
INTISARI…………………………………………………………………... iv
BAB I. PENDAHULUAN………………………………………………….. 1
BAB II. TINJAUAN PUSTAKA ………………………………………….. 2
BAB III. LEMBAR PENGESAHAN……………………………………… 3
BAB IV. HASIL DAN DISKUSI…………………………………………... 5
BAB V. KESIMPULAN DAN SARAN…………….……………………… 10


DAFTAR PUSTAKA………………………………………………………. 10




























iii









PEMANFAATAN LIMBAH KROMIUM DARI INDUSTRI
PENYAMAKAN KULIT SEBAGAI GLASIR

Oleh:
Lusia Permata Sari Hartanti
09/305579/PTK/6801

INTISARI

Limbah dari industri penyamakan kulit mengandung kromium.
Penanganan limbah yang tidak sesuai dapat menyebabkan pencemaran lingkungan
karena limbah tersebut tergolong dalam bahan berbahaya dan beracun, dimana
konsentrasi kromium didalam limbah adalah 56314.026 ppm. Limbah kromium
mempunyai potensi sebagai pewarna di industri keramik dan telah dikenal sebagai
chrome green. Tujuan dari penelitian adalah meneliti kemampuan pelepasan dari
immobilisasi kromium dan meneliti kualitas glasir dan karakteristiknya.
Penelitian dilakukan berdasarkan pada variasi jumlah limbah kromium
didalam campuran glasir. Komposisi glasir dasar adalah 35% feldspar, 35%
borax, 15% kaolin dan 15% quartz sand. Limbah kromium sebanyak 0%, 15%,
30% dan 45% ditambahkan ke glasir dasar. Glasir diaplikasikan menggunakan
kuas di permukaan badan keramik dan dibakar pada suhu 1100 °C selama 8 jam.
Berdasarkan TCLP tes, konsentrasi kromium antara 0 ppm – 2.960 ppm.
Semakin banyak limbah kromium ditambahkan maka konsentrasi kromium akan
meningkat. Berdasarkan tank leaching test, konsentrasi kromium pada contoh D
didalam lindi sangat rendah, antara 0.08 ppm – 0.13 ppm. Konsentrasi kromium
dari TCLP dan tank leaching test masih dibawah dari baku mutu yang ditentukan
(5 ppm) berdasarkan Peraturan Pemerintah No 85/1999. Ini berarti immobilisasi
kromium berhasil dilakukan. Hasil penelitian menunjukkan bahwa kekerasan
glasir adalah 8 skala Mohs, 6 skala Mohs, 5 skala Mohs dan 4 skala Mohs.
Semakin banyak jumlah limbah kromium ditambahkan, maka nilai kekerasannya
akan semakin rendah. Namun, nilai kekerasan dari setiap contoh masih memenuhi
standar kualitas dari SNI 15-4249-1996, yaitu minimum 4 skala Mohs.
Penambahan limbah kromium sebanyak 0%, 15%, 30% dan 45% menghasilkan
variasi warna hijau. Seakin banyak jumlah limbah kromium ditambahkan, maka
warna hijau akan semakin gelap.

Kata kunci: limbah kromium, kekerasan, pelepasan, warna












iv









BAB I
LATAR BELAKANG


Perkembangan industri tumbuh dengan pesat. Industri menghasilkan
produk yang sangat berguna bagi kebutuhan manusia. Tetapi industri juga
menghasilkan limbah, baik padat, cair maupun gas. Kadangkala limbah tersebut
termasuk ke dalam limbah bahan berbahaya dan beracun. Limbah berbahaya dan
beracun harus diolah atau dikurangi konsentrasinya sebelum dibuang ke
lingkungan. Berdasarkan Peraturan Pemerintah No. 85/1999, pengelolaan limbah
bahan berbahaya dan beracun adalah rangkaian kegiatan yang mencakup reduksi,
penyimpanan, pengumpulan, pengangkutan, pemanfaatan, pengolahan, dan
penimbunan limbah B3.
Berdasarkan penilaian yang dilakukan pemerintah terhadap anggota
PROPER (Program Penilaian Peringkat Kinerja Perusahaan dalam Pengelolaan
Lingkungan Hidup) menunjukkan bahwa jumlah limbah berbahaya dan beracun
dari sektor tambang, energi, minyak dan gas, manufaktur dan agrobisnis yaitu
6.734.699,84 ton, 10.898.397,41 ton, 11.091. 117 ton dan 19.430.748,38 ton pada
tahun 2006, 2007, 2008 dan 2009 (Kementerian Lingkungan Hidup, 2009).
Yogyakarta sebagai salah satu kota di Indonesia yang memiliki kegiatan
industri juga menghasilkan limbah berbahaya dan beracun, khususnya limbah
berbahaya dan beracun yang dihasilkan dari industri penyamakan kulit, tekstil dan
electroplating. Limbah tersebut mengandung logam-logam berat, seperti arsenik,
kadmium, kromium, tembaga, timbal dan seng.
Kromium dapat dimanfaatkan sebagai pewarna didalam industri, seperti
keramik, ubin, keramik hias, dan keramik rumah tangga. Penggunaan pewarna
pada keramik adalah untuk menambah keindahan produk dan meningkatkan
kekuatan keramik/badan keramik dari penyerapan air.









1









BAB II
TINJAUAN PUSTAKA
Sagala, dkk (1994) melakukan penelitian pada glasir berwarna dari lumpur
manufaktur elektroplating, dimana kandungan kromium sebesar 20-30%. Setelah
proses fisik dan kimia, lumpur dapat digunakan sebagai pewarna keramik. Metode
dari pembuatan glasir berwarna dilakukan dengan variasi komposisi. Kalsinasi
lumpur dilakukan pada suhu 900 °C untuk menghasilkan warna hijau. Warna
coklat dibuat dengan menambahkan logam oksida dan kalsinasi dilakukan pada
suhu 1280 °C.
Hamzah, dkk (1992) melakukan penelitian pada penggunaan kromium dari
industri penyamakan kulit sebagai pewarna keramik. Pemanfaatan kromium
menggunakan alat ekstrasi kromium skala kecil. Alat ekstrasi digunakan untuk
memproses limbah kulit kering sehingga menghasilkan oksida kromium. Oksida
kromium dapat digunakan sebagai pewarna, baik glasir berwarna atau dekorasi
under glaze pada suhu 1250 °C.
Rifat dan Yusdi (2002) melakukan penelitian pada pemanfaatan limbah
PT. Krakatau Steel sebagai bahan pewarna keramik. Hasil pengolahan limbah PT.
Krakatau Steel mengandung banyak logam berat. Kandungan terbesar adalah
oksida besi (Fe2O3) sejumlah 97.67%. Warna gelap didapatkan dari oksida besi
atau campuran oksida. Warna keramik dapat dihasilkan dengan menggunakan
glasir m-frit (dibakar pada suhu 900 °C) dan glasir seng (dibakar pada suhu 1250
°C)
Wenas dan Subari (2007) melakukan penelitian pada pemanfaatan bubuk
silka dari benesiasi limbah gas alam di daerah Wonosobo sebagai bahan glasir.
Material tersebut harus dibenesiasi terlebih dahulu sebelum digunakan sebagai
pewarna keramik. Dari benesiasi, tiga macam komposisi glasir diteliti
menggunakan 20-30% silica murni, 60-70% frit Pb3O4, 10% kaolin dan 5%
dextrin sebagai bahan pengikat dan dibakar pada suhu 800 °C dan 900 °C.
Nuryanto dan Tri (2008) melakukan penelitian mengenai limbah padat dari
Palimanan. Sekitar 20% dari material produksi belum dimanfaatkan secara
optimal. Komposisi mineral, gelas vulkanik (40-60%) dan feldspar (23-50%)


2









mempunyai potensi untuk digunakan sebagai bahan baku glasir bukan timbal.
Hasil dari penelitian menunjukkan bahwa limbah industri dapat digunakan sebagai
bahan baku glasir bukan timbal dengan penambahan sejumlah kapur dan bahan
aditif. Formula glasir menghasilkan glasir transparan pada suhu 1280 °C.
Penambahan borax, maksimum sebanyak 20%, menghasilkan glasir warna bukan
timbal yang baik pada suhu 1000 °C.
Berdasarkan Nuryanto (2008) dan Subari (2006) dalam Nugrahesti (2010),
komposisi kimia dari bahan keramik dijelaskan pada Tabel 2.1.
Tabel 2.1 Komposisi Bahan Keramik













(sumber: data sekunder *) Nuryanto, Desember 2008, **) Subari, Desember
2006 ) dalam Nugrahesti, 2010).






















3









BAB III
METODE PENELITIAN
3.1. Bahan Penelitian
1. Limbah kromium dari industri penyamakan kulit, PT. Adi Satria Abadi,
Bantul.
2. Quartz Sand dari Balai Besar Keramik, Bandung..
3. Feldspar dari Balai Besar Keramik, Bandung.
4. Kaolin dari Balai Besar Keramik, Bandung.
5. Borax dari Toko Aneka Sari, Pekalongan.
6. Ceramic Body dibuat dari tanah liat Singkawang.
7. Air kran and aquades dari Laboratorium Konservasi Energi dan Pencegahan
Pencemaran, Departemen Teknik Kimia, Universitas Gadjah Mada.
3.2. Prosedur Penelitian
3.2.1 Prosedur Penelitian Awal
1. Identifikasi Limbah Cr
Tujuan dari identifikasi limbah Cr adalah mengetahui konsentrasi Cr, Fe dan
Ti. Identifikasi menggunakan mesin AAS (Atomic Adsorption
Spectrofotometry).
2. Persiapan Limbah Kromium
Tahap dari persiapan limbah kromium adalah:
a) Prosess Pengeringan
Tujuan dari proses ini untuk mengurangi kandungan air didalam
limbah. Limbah kromium diletakkan didalam loyang selama 4.5 jam pada
suhu 110 °C untuk proses pengeringan.
b) Proses Penghalusan
Proses penghalusan menggunakan motar. Mortar digunakan untuk
menghaluskan limbah kromium yang masih berupa bongkahan sehingga
mempunyai butiran yang halus.
c) Proses Pengayakan
Proses pengayakan menggunakan ayakan dengan nomor 60.
3. Persiapan Glasir dan Pembakaran


4









a. Material glasir (feldspar, kaolin, quartz sand and borax) dan kromium
ditimbang berdasarkan komposisinya. Limbah kromium sebanyak 0%,
15%, 30% dan 45% ditambhakan ke dalam campuran.
b. Setelah bahan-bahan dicampurkan lalu ditambahkan air proporsional
dengan berat dan diaduk sampai homogen.
c. Badan keramik dibersihkan dan kemudian glasir diaplikasikan pada
permukaan badan keramik dengan menggunakan kuas dan kemudian
dikeringkan.
d. Contoh yang telah dikeringkan kemudian dibakar pada suhu 1100 °C
selama 8 jam dengan waktu penahanan 45 menit pada suhu tertinggi.
e. Setelah tungku pembakaran dingin, keramik dapat dikeluarkan.


































5









BAB IV
HASIL DAN DISKUSI


4.1. Identifikasi Limbah Kromium
Identifikasi Limbah dilakukan untuk mengukur konsentrasi dari logam
berat menggunakan metode AAS (Atomic Adsorption Spectrophotometry). Hasil
dari identifikasi limbah kromium ditunjukkan pada Tabel 4.1.
Tabel 4.1 Karakteristik Limbah Kromium






(Sumber: data primer, 2011)
*) ND = Not Detected
Konsentrasi kromium didalam limbah adalah 56314.026 ppm. Ini berarti
bahwa konsentrasi tidak memenuhi baku mutu berdasarkan Peraturan Pemerintah
No. 85/1999, yaitu 5 ppm. Jadi limbah kromium harus diolah sebelum dibuang ke
lingkungan.
4.2. Efek Limbah Kromium Terhadap Titik Leleh
Pada rangkaian pertama dari penelitian awal, dilakukan penelitian
mengenai efek penambahan limbah kromium kedalam campuran glasir terhadap
titik leleh. Komposisi glasir dasar adalah 55% feldspar, 15% kaolin, 15% quartz
sand dan 15% garam. Limbah kromium sebanyak 0%, 15%, 30% dan 45%
ditambahkan kedalam campuran glasir dasar. Hasil dari tiap-tiap pembakaran
ditunjukan pada table 4.2.
Tabel 4.2 Efek Limbah Kromium Terhadap Titik Leleh












6









4.3. Perbandingan Penggunaan Limbah Kromium dan Kromium Bukan
Limbah
Dalam rangkaian kedua dari penelitian awal, dilakukan penelitian
mengenai penggunaan kromium bukan limbah sebagai pewarna.. Hasilnya
ditunjukkan pada Tabel 4.3.
Table 4.3. Perbandingan Penggunaan Limbah Kromium dan kromium bukan
limbah 1100 °C









4.4. Komposisi glasir
Pada penelitian ini, glasir dasar dibuat dengan mencampurkan 35%
feldspar, 35%, 15% and 15% quartz sand. Limbah kromium sebanyak 0%, 15%,
30% dan 45% dari berat total ditambahkan. Setelah diglasir, badan keramik
dibakar pada suhu 1100 °C selama 8 jam.
Kaolin berfungsi sebagai sumber alumina dan silika didalam glasir,
komponen ini membuat glasir dapat melekat pada badan keramik dan tidak lepas
ketika dipanaskan. Quartz sand sebagai sumber silika didalam campuran glasir.
Silika menghasilkan sifat mekanik pada glasir dan sebagai pembentuk gelas.
Silika mencegah retak, pecah selama proses pengeringan atau pembakaran.
Feldspar sebagai unsur peleleh. Feldspar menambah kekuatan, kekerasan dan
kilap glasir. Borax merupakan penurun titik leleh yang sangat kuat dan pelarut
bagi material yang digunakan dalam glasir. Ini membantu dalam mencegah cacat
selama proses kematangan seperti goresan, retak, lubang pada permukaan keramik
sebelum kematangan. Kromium berfungsi sebagai pewarna didalam campuran
glasir dan digunakan untuk menghasilkan warna hijau.







7









4.5. Uji Kekerasan
Uji kekerasan dilakukan dengan metode Mohs, Gambar 4.1 menunjukkan
hubungan antara kekerasan dan komposisi kromium. Semakin banyak persentase
limbah komium menurunkan kekerasan glasir. Namun demikian kekerasan dari
setiap contoh masih memenuhi baku mutu dari SNI 15-4249-1996.

10

8
6
4
2
0

hardness

A (0% of Cr) B (15% of

C (30% of

D (45% of

Cr) Cr)
Cr Composition

Cr)


Gambar 4.1. Kekerasan Glasir


4.6 Leaching Test
4.6.1 Toxicity Characteristic Leaching Procedure (TCLP)
Analisis ini dilakukan untuk menentukan taraf pelepasan kromium dari glasir.
Gambar 4.2. menunjukkan hubungan antara konsentrasi kromium dan komposisi
kromium. Konsentrasi kromium ini masih dibawah baku mutu (5 ppm)
berdasarkan Peraturan Pemerintah No. 85/1999. Ini berarti bahwa immobilisasi
kromium berhasil.


6
5

4

Cr Concentration
(ppm)

3
2
1
0
A (0% of Cr) B (15% of Cr) C (30% of Cr) D (45% of Cr)
Cr Composition
Gambar 4.2 Konsentrasi kromium didalam lindi meggunakan TCLP





8










4.6.2 Tank Leaching Test
Tank leaching test dilakukan untuk meneliti perilaku dari pelepasan
kromium dari badan keramik di air. Tank leaching test meneliti pelepasan
kromium contoh D. Badan keramik (contoh D) direndam aquades didalam bejana
selama 7 hari. Gambar 4.3 menunjukkan hubungan antar konsentrasi kromium
dan hari perendaman. Konsentrasi kromium didalam lindi sangat rendah, berada
dalam batas 0.08 ppm – 0.13 ppm. Kromium terkungkung dengan baik didalam
glasir.

5.00
4.50
4.00
3.50
3.00

2.50
2.00
1.50
1.00
0.50
0.00

Cr Concentartion

1st day (April, 27th

3rd day

5th day (May, 1st 7th day (May, 3rd

2011)

(April, 29th 2011)

2011)

2011)

Day
Gambar 4.3 Konsentrasi Kromium dari Contoh D didalam Lindi Dengan Tank
Leaching Test.
4.7. Kenampakan Warna
Penambahan limbah kromium menghasilkan variasi warna hijau. Semakin
banyak limbah kromium ditambahkan, maka warna hijau akan semakin pekat.
Warna dari glasir ditunjukkan pada tabel 4.4.
Tabel 4.4 Kenampakan Warna Glasir














(Sumber: data primer, 2011)



9










BAB V
KESIMPULAN DAN SARAN
5.1. Kesimpulan
1. Berdasarkan TCLP dan tank leaching test konsentrasi kromium didalam lindi
sangat kecil, pada batas 0–2.960 ppm.
2. Kekerasan dari contoh A, B, C, D adalah 8 skala Mohs, 6 skala Mohs, 5 skala Mohs
dan 4 skala Mohs. Penambahan limbah kromium campuran glasir menghasilkan
variasi warna hijau. Semakin banyak jumlah kromium ditambahkan, maka
warna hijau akan semakin gelap.
5.2. Saran
1. Pengembangan penelitian dapat dilakukan dengan melakukan variasi resep glasir,
bahan, suhu pembakaran dan waktu penahanan. Meneliti warna lain yang dapat
dihasilkan dari limbah kromium.
2. Meneliti pengaruh dari produksi gas dari pembakaran keramik terhadap lingkungan.
DAFTAR PUSTAKA
Badan Standardisasi Nasional, 1996, SNI 15-4249-1996: Keramik Hias Jenis
Gerabah Padat, Badan Standardisasi Nasional, Jakarta.
Hamzah, F., Sarwendah and Suhanda, 1992, Pemanfaatan Krom dari Limbah
Industri Penyamakan Kulit Untuk Bahan Pewarna Keramik, Jurnal Keramik
dan Gelas Indonesia, Volume I No.1, Bandung.
Menteri Negara Lingkungan Hidup, 2009, Status Lingkungan Hidup,
Kementrian Lingkungan Hidup, Jakarta.
Nugrahesti, 2010, Immobiliassi Logam Berat Pada Limbah Sludge Bahan
Berbahaya dan Beracun (B3) dan Potensi Prodeksnya Sebagai Bahan
Keramik, Magister Sistem Teknik Universitas Gadjah Mada, Yogyakarta.
Nuryanto and Tri, E., 2008, Prospek Limbah Industri Batu Tempel sebagai Bahan
Mentah Glasir Non-Timbal, Balai Besar Keramik, Bandung.
Presiden Republik Indonesia, 1999, Peraturan Pemerintah No.85 Tahun 1999
tentang Pengelolaan Limbah Bahan Berbahaya dan Beracun, Menteri
Sekretaris Negara, Jakarta.
Rifat, A. and Yusdi I., 2002, Pemanfaatan Limbah PT. Krakatau Steel Sebagai
Bahan Pewarna Keramik, Jurusan Teknik Kimia, Universitas Jendral Ahamad
Yani, Cimahi.
Sagala, M., Soesilowati and Suhanda, 1994, Pembuatan Glasir Berwarna
dari Limbah Lumpur Electroplating, Jurnal Balai Besar Keramik Volume 3
No. 2, Bandung.
Wenas and Subari, 2007, Pemanfaatan Serbuk Silika Hasil Pengolahan Limbah
Pengeboran Gas Alam di Dieng sebagai Bahan Glasir Keramik, Balai Besar
Keramik, Bandung.



10


Kusnanto - Personal Name
Prasetya, Agus - Personal Name
Hartanti, Lusia Permata Sari - Personal Name
Mei 2011
R 338.642 Har u c.1 05.2011
338.642
Thesis
English
Magister Sistem Teknik UGM
2011
Yogyakarta
xiii, 81 hlm.; ilus.; 29 cm.
Disertai CD
LOADING LIST...
LOADING LIST...