Detail Cantuman Kembali

XML

Optimasi Desain Light Shelf untuk Daylighting Bangunan Hemat Energi


Naskah Ringkasan

OPTIMIZATION OF LIGHT SHELF DESIGN FOR
DAYLIGHTING IN SAVING ENERGY BUILDING

Usulan Penelitian untuk Tesis S-2


Konsentrasi Joint Program

Magister Sistem Teknik


















Diajukan oleh

NORMA PRADIPTA

08/278969/PTK/5554



Kepada

PROGRAM PASCA SARJANA

UNIVERSITAS GADJAH MADA

YOGYAKARTA

2011







OPTIMIZATION OF LIGHT SHELF DESIGN FOR
DAYLIGHTING IN SAVING ENERGY BUILDING




Tesis
Untuk memenuhi sebagian persyaratan
Mencapai derajat Sarjana S-2




Program Studi Magister Sistem Teknik
Konsentrasi Joint Program
Jurusan Teknik Mesin
Fakultas Teknik


















diajukan oleh
Norma Pradipta
08/278969/PTK/5554



Kepada
PROGRAM PASCA SARJANA
UNIVERSITAS GADJAH MADA
YOGYAKARTA
2011









ABSTRACT


The global warming issue and the limitation of unrenewable energy resources create
issue of the importance of energy conservation in the building. Solar energy resources in
Indonesia has a potency to be used as natural daylighting in building architecture, mostly in
high rise building to support saving energy building. Light shelf is one of passive strategies
of solar resources utilizing in building. Light shelf has a characteristic to reflect the
daylight to the ceiling so that its distribution can be more uniform to the room interior.
This research is aimed to find the most optimum light shelf design based on
variables that are proceed such as dimension and angle of interior light shelf and also the
position of light shelf height that affect on the conventional window dimension ratio to
clerestory window as the entrance of daylight into the room. The research was limited to the
specified parameter such as location in Jakarta city, office building, time, dimension, and
room reflectance and the orientation as the input data in the simulation using Dialux©.
Quantity analysis method based on the optimum light criteria by light shelf such as
illuminance which fulfill the optimum room standard criteria 200-500 lux, homogenous
diffuse and uniformity.
The result of the research showed that light shelf effectiveness is influenced by
dimension, angle and clerestory window on the light shelf as the most effective design is the
the 1,2 m dimension, angle 5o and height 2,0 m or clerestory 0,8 m dimension. The most
influential variable is light shelf height or clerestory dimension continued with angle and
dimension of light shelf. Light shelf design that recommended is the 0,9-1,2 m dimension,
angle 0o-5o and height 2,0 m or clerestory 0,8 m dimension. This recommendation is
presented in a prototype formed light shelf mock up.

Key words: daylight, energy, light shelf, office building, Dialux©







TABLE OF CONTENTS


Cover ........................................................................................................................ i
Title and Identification of the Study Program ........................................................ iii
Approval Page ......................................................................................................... ii
Table of Contents .................................................................................................. vii
CHAPTER 1.INTRODUCTION
1.1. Backgrounds ...................................................................................... 1
1.2. Research Benefit................................................................................. 1
1.3. Research Puposes .............................................................................. 1
1.4. Problem Limitation ............................................................................ 1
CHAPTER 2.LITERATURE REVIEW
2.1. Literature Review ............................................................................... 2
2.2. Theoritical Review ............................................................................. 2
2.3. Hypothesis ......................................................................................... 3
CHAPTER 3. RESEARCH METHODOLOGY
3. 1. Research Place and Time................................................................... 3
3. 2. Research Materials and Devices ........................................................ 3
3. 3. Research Methodology....................................................................... 3
3. 4. Research Parameter and Variabel....................................................... 4
3. 5. Analysis .............................................................................................. 4
3. 6. Prototype Design (Mock Up) Light Shelf .......................................... 4
CHAPTER 4. DATA PROCESSING AND ANALYSIS
4. 1. Based on Light Shelf Dimension Variable ......................................... 4
4. 2. Based on Light Shelf AngleVariable.................................................. 6
4. 3. Based on Light Shelf HeightVariable................................................ 7
4. 4. Analysis Based on Time Variable ...................................................... 9
CHAPTER 5. CONCLUSION AND SUGGESTION
5.1. Conclusion............................................................................................ 9
5.2. Suggestion ............................................................................................ 9
References ............................................................................................................. 10







CHAPTER I
INTRODUCTION


1.1 Background
The global warming issue and the limitation of unrenewable energy resources
appears an issue of the importance of energy conservation in the building. Solar resources in
Indonesia have a potency to be used as natural lighting in the building architecture,
especially in saving energy for high rise building. Light shelf is a strategy of using natural
lighting in the buildings passively. The characteristic of light shelf is reflecting the daylight
to the ceiling directly, so that the light distribution will spread deeply to the whole room
interior.
1.2 Research Benefit
The benefits of this research are to develop the technology of natural lighting in
building architecture; to present an optimal light shelf as an alternative design in the using
of daylight in Indonesia; to contribute in the saving energy of building to realize sustainable
building principle; and to increase work productivity in interior room such as in office room.
1.3 Research Purpose
The purpose of this research is to optimize the light shelf design in the buildings in
Indonesia, especially in high rise building and to recommend the most optimal light shelf
design based on quantitative analysis of physical analysis range (location, climate condition,
daylight) and researchable variable which is applied in a prototype model.
1.4 Problem Limitation
The research was limited to the light shelf variable such as:
dimension (0,3 m; 0,6 m; 0,9m; 1,2 m; dan 1,5 m), angle (0o, 5o, 10o, dan 15o) and light
shelf height (2,0m; 2,1 m; 2,2m; 2,3 m; dan 2,4m) on a certain condition as the input data to
the simulation: location in Jakarta has geographical location 106.80 BT -6.20 LS and time
+7 hours Greenwich Mean Time (GMT), date September 23rd at 10.00 o’clock, North
orientation, clear sky, office building model 12 x 12 x 2,8 meter light standard 200-500 lux,
material light shelf aluminum reflectance 90%, work plane’s height 0,8 m from floor, and
did not estimate factors outside light factor, such as temperature.







CHAPTER II
LITERATURE REVIEW


2.1 Literature Review
The interrelated light shelf research had been done for many researcher such as
desain selubung bangunan kantor (Ariatsyah, 2007), Quick Determination of Daylight and
Irradiance in a Room with Lightshelf and Its Application to a Hot Humid Climate (Pereira
de Castro and Gonçalves Bastos, 1997), Maximizing The Lightshelf Performance By
Interaction Between Lightshelf Geometries and A Curved Ceiling (Freewan, 2009).
2.2 Theoritical Review
Natural Lighting can be decided into two sections, they are sunlight and daylight that
is spread by atmosphere particles. The purpose of daylighting system is to produce the
amount of light that is needed in a building for a moment to make sure the visual show and
produce enough lighting contrast for the visual comfort. (Robbins, 1986). Light shelf is one
of the sidelighting components as the part of daylighting concept. According to the book
Daylighting Application Guides, Daylighting system has three main functions, for solar
shading, glare protection, and daylight.
Light shelf is one of the strategies in saving natural energy and passive on the
daylighting context, which is designed to shade and reflect lighting on the surface and to
minimize glare from the sky (Daylighting application guides, hal.4 -9). The characteristic of
light shelf is an architectural element component from daylighting design. It looks like a
field that is put above the clerestory and oriented on sun position. It has function for
overhang/ shading, reflecting sunlight to the ceiling and distributing to the whole room so
that it can increase the indirect lighting in the room, minimize the glare and fading, warmth,
and increase the luminance level and uniformity.
The parameter of comfort in lighting in a classroom is the fulfillment of horizontal
lighting level for visual task in reading 200 lux-500 lux on the workplane , do not cause the
darkness, lighting and glare (Hardjanto, 2008)
Dialux© is an Engineering software comes from Germany and it is a kind of lighting
layout calculation software. It does not only trade on the Engineer side, but also the
visualization as the superiority. Dialux© simulation can be done by using the lamps that are
available in the world’s lamp industry and causes the rendering will be similar to the real
condition.







2.3 Hypothesis
The longer dimension, the bigger angle,, and the lower height of light shelf is not
certain to give optimal daylight distribution illumination result.


CHAPTER III
RESEARCH METHODOLOGY


3.1 Research Place and Time
Location as input data of the simulation was in Jakarta, by the geographical location
106.80 BT -6.20 LS and time +7 jam Greenwich Mean Time (GMT) date September 23rd
2010 on autumn equinox condition where the position of the sun was above the equator.
Timee used for main input simulation at 10.00 a.m.
3.2 Research Materials and Equipments
This research used equipments included computer, software, DIAlux©, AutoCad
2008©, CorelDraw X3©, MS. Office 2007© and the equipments to make light shelf mock
up. The materials needed for the simulation were input data, including day lighting
condition that was appropriate to the problem limitation.
3.3 Research Methodology
The research was started by deciding light shelf variation and the problem limitation
in the simulation range and continued by using Dialux© simulation. The result of simulation
in the form of illuminance data that being analyzed and obtained the most optimal light shelf
variant combination for mock up design in the form of light shelf mock up.



















Figure 1. Research methodology







3.4 Research Parameter and Variable
Parameter was limited by location, light scenes data, room model, Maintenance plan
method, room surface reflectance, workplane height 0,8 m from floor, light shelf was put in
the window’s width 12meter using the thickness 0,1m and reflectance 90% aluminum
material; time at 10.00 a.m., orientation 0o luminaire in the room and interfering factor,
room height from fround 16 meter, Ground elemen with zero reflectance level. Simulated
variable included light shelf interior dimension(6 variants: Light shelf with dimension 0 m;
0,3m; 0,6 m; 0,9m; 1,2 m; and 1,5 m); light shelf interior angle (4 variants: light shelf with
angle 0o, 5o, 10o, and 15o) and light shelf installing height (5 variants: light shelf with height
2,0 m; 2,1 m; 2,1 m; 2,3 m; and 2,4 m from floor surface).
3.5 Analysis
The analysis based on optimal light shelf criteria used luminance value which fulfill
office light standard 200-500 lux, quantitative analysis based on error, deviation standard or
spread system, and uniformity value on the workplane.
3.6 Light Shelf Prototype Design Mock Up
Light shelf mock up is a recommended light shelf prototype model based on the result of the
research with the comparison 1:2 times the real mass.











Figure 2. Room simulation design and mock up light shelf


CHAPTER IV
RESULT AND DISCUSSION


It is appropriate to the analysis research method that is luminance values in some
critical spots graphic and table analysis method. Then the error analysis, deviation standard,
and uniformity with the calculation result data in the table.











H



Figure 3. Room simulation section 12x12 m
Keterangan :
a = light shelf eksterior dimension
b = light shelf interior dimension
H = light shelf height
h = conventional window height
x = clerestory height (2-h)
Rc = ceiling reflectance
Rw = wall reflectance
Rf = floor reflectance

The result data of the research was obtained from the calculation of Dialux©
software in the form of luminance value data in the Lux unit to the spots of 3 (three) areas
that are examined: ceiling, workplane, and floor. But, the analysis will be focus more in
workplane because the activities in an office mostly done here.


4.1 Based on Light shelf Dimension Variable
Research for light shelf interior dimension variation showed the using of light shelf
in the room could increase the light distribution on the workplane if it was compared to the
non-light shelf. Commonly, the bigger the light shelf interior, the lower luminance value
and the daylight distribution more spread and increased the visual comfort. Luminance
value for dimension variant 0,9 m and 1,2 m paling fulfilled light standard for the most at
200-500 Lux.











Figure 4. Illuminance value on the workplane for light shelf dimension variable
Based on error value analysis result data, deviation standard and uniformity, we
could see that dimension 1,5 m was the most optimal because the spread system of the most
homogenous luminance value and the closest ideal light value 300 lux. But, based on







uniformity value, dimension variant 1,2 m had luminance value on the effective area which
had the most uniform.
Table 1 The luminance value of light shelf dimension variable on the workplane













4.2 Based on Light Shelf Angle Variable
Light shelf angle is one of the elements which influences the reflection systems on
light shelf and ceiling fields. A research by Danish Building Research Institute Denmark
(DEN) about Eksterior light shelf with semi-reflektive surface in Denmark, found that
conventional light shelf had a limitation in the application in some high-latitude countries
because they needed to add shading devices for a long years. If it is used in the overcast
climate, light shelf must be put a little bit sideways. According to SNI 03-2396-2001, as the
Design Sky in Indonesia was decided blue sky without any cloud or the whole sky which
closed by cloud. In this research, we used clear sky to see the effect of sun light maximally
with four light shelf angle variants 0o, 5 o, 10 o and 15o.










Figure 5. Illuminance value on the workplane for light shelf angle variable
o

showed that the biggest interior light shelf angle would not guarantee to give the best
lighting quality on the workplane. But, it was very influenced by daylight appear angle on
the time as the simulation input data.







Table 2 The luminance value of light shelf angle variable on the workplane













4.3 Based on Light Shelf Height Variable
The position of light shelf panel laying the clerestory will influence it as the entrance
of sun light to the room. In the book of “Energy Efficiency manual pada bab control and
use of sunlight”, light shelf is very useful especially in the glazing area with width and
height more than 6,5 feet (2,2, meter)
Lighting on the workplane for light shelf variable was influenced by clerestory’s
width where the sun light entered and then was reflected by light shelf surface to the ceiling
and would be continued to inside the room. The lower of light shelf installing, the wider
clerestory area and the more daylight that was reflected. On the other hand, the higher of
light shelf installing could give chance for direct sunlight to workplane area that had
potency to cause warmth..











Figure 6. Illuminance value on the workplane for light shelf height variable
Luminance value that fulfill area 200-500 lux was on distance 0,25-4,5 meter. The
lower of light shelf installing, so the lower luminance value and more smooth the lighting
distribution and it can be seen from the slope slightly curve shape. But, H that was too low
could disturb working activities so in this research we took the lowest H 2,0 meter as the
limitation.







Table 3 The luminance value of light shelf height variable on the workplane










Commonly, the analysis of light shelf interior dimension variant, light shelf interior
angle, and light shelf position height to floor surface has a tendency almost the same to
ceiling and floor field.
Analysis to ceiling field, the longer the dimension of light shelf, so the better the
lighting visual level in the room. The bigger the light shelf angle, so the lower luminance
value and the lighting distribution become smoother. The ranges of daylight penetration
between the four angle variants were not too big different and just around in 2 meters area.
The effective lighting area was 0-8 meters from the window. Based on the light shelf
installing height, the lowest light shelf installing from the floor surface influenced to smooth
luminance value because it gave enough area for daylight to enter through the clerestory and
then be reflected by ceiling. The comparison of human based on gold slice “le Modulator”,
human’s height is 1,829 m (Neufert, 1991). Variant H 2,0 m and the best in fulfilling office
lighting standard 200-500 lux. Effective area on the ceiling field was in the edge of
clerestory until the depth 2–2,5m. Luminance value analysis on the floor field has a
tendency almost the same to the workplane.
Based on luminance value analysis on the workplane , the average effective area was
6 meters. So, in the error relative value calculation, the standard deviation and uniformity
used luminance limitation from 0,05 – 6,00 meters. For the light shelf interior angle
variants, the angle variant 5o had the most optimal and for the light shelf position height
variant (clerestory dimension), variant H 2,0 m had the most optimal value.
Table 4 Error relatif value summary, deviation standard, dan uniformity







2 sudut light shelf
2.1 0 0,328205128 106,3764677 0,413817496
2.2 5 0,276512821 91,64128961 0,459868261
2.3 10 0,41425641 156,2044934 0,383233533
2.4 15 0,283692308 97,67252241 0,460456756
3 ketinggian light shelf
3.1 2,0 m 0,328205128 106,3764677 0,413817496
3.2 2,1 m 0,377128205 124,5907184 0,373081879
3.3 2,2 m 0,442153846 148,8441396 0,331144571
3.4 2,3 m 0,47774359 162,5032204 0,295192734
3.5 2,4 m 0,516 178,2035785 0,284935315


4.4 Based on Time Variable
On the time variation, the curve which is close to each other showed that illuminance
for many variants have almost the same value except at 08.00 a.m. the curve at 10.00 a.m.
has middle illuminance value from many variants so it can be assumed to represent other
variants.
CHAPTER V
CONCLUSION AND SUGGESTION
5.1 Conclusion
Light shelf functions are as shading, increasing light distribution in a room,
minimalizing glare, warming and fading, increasing luminance level and uniformity
influenced by dimension and light shelf angle and also light shelf height position or
clerestory window for daylight input. In this research, the factors outside light factor, such
as thermal and clear sky cannot be estimated. Interrelated to green building movement in big
cities, light shelf is one of the natural light strategies that is easy and low cost by using the
materials that are ‘green’ enough and safe for environment such as Aluminum.
The research result showed that the most effective light shelf design was on
dimension 1,2 meter, angle 5o and height 2,0 meter or clerestory dimension 0,8 m. the most
influential variable was clerestory height or the light shelf assembling followed by angle and
dimension of light shelf. The recommended light shelf was the dimension between 0,9 – 1,2
m, angle 0o-5o, and height 2,0 meter or clerestory dimension 0,8 m. The effective area on the
workplane was located in the light shelf effect to the solar light depth was 0-6 meter from
the clerestory.
5.2 Suggestion
The suggestions from this research are the range limitation covers the input data and
model design must be specific to be simulated to the great validity software, obstruction in
the calculation must be noticed and comparison of the real condition test must be done.







REFERENCES
Abdulmohsen, Abdullah, Boyer, Lester L., Degelman, Larry O. 1994. Evaluation of Lighshelf Daylighting
Systems for Office Buildings in Hot Climates. Texas: Texas A&M University College Station.
Angus, Roderick Charles B.Eng. 1995. Daylight Illuminance Modeling for The United Kingdom and Europe.
UK: Napier University.
Anonim. 01/05/2011. Dialux The Software Standard for Calculating Lighting Layouts: user manual.
http://www.dial.de.
Anonim. 01/11/2009. Interior Project: Modeling in Dialux. http://gitalistia.wordpress.com.
Ariatsyah, Ardian. 2007. Optimasi Desain Selubung Bangunan Kantor terhadap Kenyamanan Visual
Penerangan Alami. Thesis. Surabaya: Institut Teknologi Sepuluh Nopember.
Astawa, Ketut S. 01/11/2009. Pemanasan Global dan Konsep Rumah Hemat Energi.
http://www.energiterbarukan.net.
Boyce, Peter, Hunter, Claudia, Howlett, Owen. 2003. The Benefit of Daylight through Windows. New York:
Lighting Research Center Rensselaer Polytechnic Institute Troy.
Dubin, Fred S. & Long, Chalmers G Jr. 1978. Energy Conservation Standards for Building Design,
Construction and Operation. New York: Mc Graw-Hill Book Company.
Freewan, Ahmed A. 2009. Maximizing The Lightshelf Performance By Interaction Between Lightshelf
Geometries and A Curved Ceiling. Jordan; Jordan University of Science and Technology.
Gochenour, Sharon J. & Andersen, Marilyne. 2009. Circadian Effects of daylighting in a Residential
Environment. Istanbul.
Hyde, Richard & Pedrini, Aldomar. 1996. An Energy Conservation Architectural Design Tool for warm
Climate (LTV) : The tool development and testing. Australia: Australian Research Council.
Karlen, Marka & Benya, James R. 2004. Lighting Design Basic. New Jersey: John Wiley & Sons, Inc.
Kasfy, Muhammad. 2008. Evaluasi Tata Cahaya di Masjid Al-Hayat Pondok Pesantren Al-Zaytun,
Indramayu. Skripsi. Bandung: Institut Teknologi Bandung.
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. 2005. Blueprint Pengelolaan Energi
Nasional 2005-2025. Jakarta.
Kim, S.Y. & Kim, J.J. 2007. 01/11/2009. The Effect of fluctuating Illuminance on visual sensation in a Small
Office. Indoor and Built Environment. http://www.sagepublications.com.
Lauring, Michael & Marsh, Rob. 2009. Architecture & Energy Strtaegies for a Changing Climate. Denmark:
Aalborg University.
Mardaljevic, John, PhD. 2008. Climate-Based Daylight Analysis. UK: Institute of Energy and Sustainable
Development De Montfort University.
Mardaljevic, John, PhD. 1999. Daylight Simulation: Validations, Sky Models and Daylight Coefficients. UK:
Institute of Energy and Sustainable Development De Montfort University.
Onai, Toshio & Oki, Masato. 2001. Daylight Factor Distribution in Interior based upon the Mean Sky. Japan;
Ashikaga Institute of Technology.
Pears, Alan. 1998. Strategic Study of household Energy and Greenhouse Issues. Australia: Sustainable
Solutions Pty Ltd.
Peraturan Gubernur Provinsi Daerah Khusus Ibukota Jakarta Nomor 33 Tahun 2008 tentang Pelaksanaan
Penghematan Energi di Lingkungan Pemerintah Provinsi Daerah Khusus Ibukota Jakarta.
Phelan, John. 2002. Commissioning Lighting Control Systems for Daylighting Applications. Colorado:
Architectural energy Corporation.
Phillips, Derek. 2004. Daylighting: Natural Light in Architecture. Oxford: Architectural Press Butterworth-
Heinemann, Linacre House, Jordan Hill.
Phillips, Derek. 2000. Lighting Modern Buildings. Oxford: Architectural Press Butterworth-Heinemann,
Linacre House, Jordan Hill.
Pereira de Castro, Eduardo B. & Gonçalves Bastos, Leopoldo Eurico. 1997. Quick Determination of Daylight
and Irradiance in a Room with Lightshelf and Its Application to a Hot Humid Climate. Brazil:
Universidade Federal de Juiz de Fora, Universidade Federal do Rio de Janeiro.
Paramita, Pradnya. 2008. Studi Penyilauan dari Bidang Mihrab pada Kegiatan Ceramah di dalam Masjid.
Skripsi. Bandung: Institut Teknologi Bandung.
Plante, Russel H. 1983. Solar Domestic Hot Water; Practical Guide to Installation and Understanding. Jhon
Wiley & Sons, Inc.
Satwiko, Prasasto. 2004. Fisika Bangunan 1. Yogyakarta: Penerbit ANDI.
Sellors, J., Nijnatten, P.A. van, Sanotra, P. 2008. Measuring the Daylight, Solar Energy and Thermal
Radiation Properties of Coated Glazing. Netherlands: International Conference on Coatings on Glass
and Plastic.







Shekari, S. & Golmohammadi, R. 2010. Ergonomic and Economic daylight for Workplaces in Iran. Iran:
Hamadan University of Medical Sciences.
Simons, R. H. & Bean, A. R. 2001. Lighting Engineering Applied Calculations. Cornwall: MPG Books Ltd.
SNI 03-6197-2000. Konservasi Energi Pada Sistem Pencahayaan.
SNI 03-2396-2001. Tata Cara Perancangan Sistem Pencahayaan Alami pada Bangunan Gedung.
Stitt, Fred A. 1999. Ecological Design Handbook : Sustainable Strategies for Architecture, Landscape
Architecture, Interior Design, and Planning. New York : Mc Graw-Hill Companies.
Tregenza, Peter & Loe, David. 1998. Design of Lighting. Taylor & Francis Routledge.
Undang-Undang Republik Indonesia No. 28 Tahun 2002 tentang Bangunan Gedung.
Woolley, Tom & Kimmins, Sam. 2000. Green Building Handbook. New York: Spon Press.









Naskah Ringkasan

OPTIMASI DESAIN LIGHT SHELF UNTUK
DAYLIGHTING BANGUNAN HEMAT ENERGI
Usulan Penelitian untuk Tesis S-2


Konsentrasi Joint Program

Magister Sistem Teknik


















Diajukan oleh

NORMA PRADIPTA

08/278969/PTK/5554



Kepada

PROGRAM PASCA SARJANA

UNIVERSITAS GADJAH MADA

YOGYAKARTA

2011









OPTIMASI DESAIN LIGHT SHELF UNTUK
DAYLIGHTING BANGUNAN HEMAT ENERGI



Tesis
Untuk memenuhi sebagian persyaratan
Mencapai derajat Sarjana S-2




Program Studi Magister Sistem Teknik
Konsentrasi Joint Program
Jurusan Teknik Mesin
Fakultas Teknik


















diajukan oleh
Norma Pradipta
08/278969/PTK/5554



Kepada
PROGRAM PASCA SARJANA
UNIVERSITAS GADJAH MADA
YOGYAKARTA
2011











INTISARI


Isu global warming dan keterbatasan sumber daya energi tidak terbaharui
(unrenewable energy) memunculkan isu pentingnya konservasi energi dalam
bangunan. Sumber daya energi matahari di Indonesia berpotensi untuk
dimanfaatkan sebagai sumber pencahayaan alami dalam arsitektur bangunan
terutama dalam bangunan tinggi (high rise building) dalam rangka mendukung
penghematan energi. Light shelf adalah salah satu strategi pemanfaatan cahaya
alami dalam bangunan secara pasif. Karakteristik light shelf adalah memantulkan
cahaya matahari tidak langsung (daylight) ke langit-langit sehingga distribusi
cahaya lebih seragam dan lebih dalam ke interior ruangan.
Penelitian ini bertujuan untuk mengetahui desain light shelf yang paling
optimum berdasarkan variabel yang diteliti yaitu dimensi dan sudut light shelf
interior serta posisi ketinggian light shelf yang berdampak pada perbandingan
dimensi jendela bawah dan jendela atas sebagai bukaan masuknya daylight ke
dalam ruangan. Penelitian dibatasi pada parameter tertentu yaitu lokasi Kota
Jakarta, fungsi bangunan kantor, waktu, dimensi dan reflektansi model ruangan
serta orientasi sebagai data input dalam simulasi menggunakan perangkat lunak
pencahayaan Dialux©. Metode analisis kuantitas berdasarkan kriteria
pencahayaan yang optimum oleh light shelf yaitu nilai illuminansi memenuhi
standar pencahayaan ruang kantor sebesar 200-500 lux, pola penyebaran homogen
dan keseragaman (uniformity).
Hasil penelitian menunjukkan bahwa efektivitas light shelf dipengaruhi
oleh dimensi, sudut dan tinggi jendela atas pada ketinggian pemasangan light
shelf dengan desain yang paling efektif adalah pada dimensi 1,2 meter, sudut 5o
dan ketinggian 2,0 meter atau dimensi jendela atas 0,8 m. Variabel yang paling
berpengaruh adalah tinggi jendela atas atau ketinggian pemasangan light shelf
diikuti sudut dan dimensi light shelf. Desain light shelf yang direkomendasikan
adalah dimensi antara 0,9 – 1,2 m, sudut 0o-5o, dan ketinggian 2,0 meter atau
dimensi jendela atas 0,8 m. Rekomendasi diwujudkan dalam prototype maket
berupa mock up light shelf.

Kata kunci : daylight, energi, light shelf, bangunan kantor, Dialux©









DAFTAR ISI


Halaman Depan........................................................................................................ i
Halaman Judul dan Identitas program Studi .......................................................... iii
Halaman Pengesahan .............................................................................................. ii
Daftar Isi ............................................................................................................... vii
BAB 1.PENDAHULUAN
1.1.Latar Belakang ...................................................................................... 1
1.2.Manfaat Penelitian ................................................................................. 1
1.3.Tujuan Penelitian .................................................................................. 1
1.4.Batasan Masalah .................................................................................... 1
BAB 2.TINJAUAN PUSTAKA
2.1. Tinjauan Pustaka................................................................................. 2
2.2. Landasan Teori.................................................................................... 2
2.3. Hipotesis ............................................................................................. 3
BAB 3. METODOLOGI PELAKSANAAN
3. 1. Tempat dan Waktu Penelitian............................................................. 3
3. 2. Bahan dan Alat Penelitian................................................................... 3
3. 3. Tata Laksana Penelitian ...................................................................... 3
3. 4. Parameter dan Variabel Penelitian ...................................................... 4
3. 5. Analisis............................................................................................... 4
3. 6. Desain Prototype (Mock Up) Light Shelf ........................................... 4
BAB 4. HASIL DAN PEMBAHASAN
4. 1. Berdasarkan Variabel Dimensi Light Shelf ........................................ 5
4. 2. Berdasarkan Variabel sudut Light Shelf ............................................. 6
4. 3. Berdasarkan Variabel Ketinggian Light Shelf .................................... 7
4. 4. Analisis Berdasarkan Variabel Waktu ................................................ 9
BAB 5. KESIMPULAN DAN SARAN
5.1. Kesimpulan ......................................................................................... 10
5.2. Saran ................................................................................................... 10
Daftar Pustaka ........................................................................................................ 10






BAB I
PENDAHULUAN


1.1 Latar Belakang
Isu global warming dan keterbatasan sumber daya energi tidak terbaharui
(unrenewable energy) memunculkan isu pentingnya konservasi energi dalam bangunan.
Sumber daya energi matahari di Indonesia berpotensi untuk dimanfaatkan sebagai sumber
pencahayaan alami dalam arsitektur bangunan terutama dalam bangunan tinggi (high rise
building) dalam rangka mendukung penghematan energi. Light shelf adalah salah satu
strategi pemanfaatan cahaya alami dalam bangunan secara pasif. Karakteristik light shelf
adalah memantulkan cahaya matahari tidak langsung (daylight) ke langit-langit sehingga
distribusi cahaya lebih seragam dan lebih dalam ke interior ruangan.
1.2 Manfaat Penelitian
Manfaat yang bisa diperoleh dalam penelitian ini adalah mengembangkan teknologi
pencahayaan alami pada arsitektur bangunan; memberikan alternatif desain light shelf yang
optimal dalam pemanfaatan daylight di Indonesia; kontribusi dalam usaha penghematan
energi dalam bangunan dalam rangka mewujudkan prinsip sustainable building; dan
meningkatkan produktivitas kerja di ruang interior seperti ruang kantor.
1.3 Tujuan Penelitian
Tujuan penelitian adalah optimasi desain light shelf pada bangunan-bangunan di
Indonesia terutama bangunan tinggi (high rise building) dan rekomendasi desain light shelf
yang paling optimal berdasarkan analisis kuantitatif lingkup kondisi fisik (lokasi, kondisi
iklim, daylighting) dan variabel yang diteliti yang diaplikasikan dalam model prototype.
1.4 Batasan Masalah
Penelitian dibatasi pada variabel light shelf yaitu dimensi (0,3 m; 0,6 m; 0,9m; 1,2 m;
dan 1,5 m), sudut (0o, 5o, 10o, dan 15o) dan ketinggian light shelf (2,0m; 2,1 m; 2,2m; 2,3 m;
dan 2,4m) pada kondisi tertentu sebagai input data ke simulasi yaitu lokasi di Jakarta dengan
letak geografis 106.80 BT -6.20 LS dan waktu +7 jam Greenwich Mean Time (GMT),
tanggal 23 September pukul 10.00 WIB, orientasi arah utara, kondisi langit cerah (clear sky),
model ruang bangunan kantor 12 x 12 x 2,8 meter dengan standar pencahayaan sebesar 200-
500 lux, material light shelf alumunium dengan reflektansi 90%, bidang kerja (workplane)
setinggi 0,8 m dari lantai, dan tidak memperhitungkan faktor lain di luar faktor pencahayaan,
seperti suhu.






BAB II
TINJAUAN PUSTAKA


2.1 Tinjauan Pustaka
Penelitian terkait light shelf telah banyak dilakukan antara lain desain selubung
bangunan kantor (Ariatsyah, 2007), penggunaan light shelf pada kondisi iklim tropis (Pereira
de Castro dan Gonçalves Bastos, 1997), interaksi bentuk geometri light shelf dan curved
ceiling (Freewan, 2009).
2.2 Landasan Teori
Pencahayaan alami terbagi dua yaitu cahaya matahari langsung (sunlight) dan cahaya
matahari tidak langsung yang disebarkan oleh partikel-partikel atmosfer (daylight). Tujuan
sistem daylighting adalah menghasilkan jumlah cahaya yang layak dimana dibutuhkan dalam
suatu bangunan sementara memastikan pertunjukan visual yang bagus dan menghasilkan
kontras pencahayaan cukup untuk kenyamanan visual (Robbins, 1986). Light shelf adalah
salah satu komponen sidelighting bagian dari konsep daylighting. Menurut buku Daylighting
Application Guides, Sistem daylighting memiliki tiga fungsi utama, yaitu pembayangan
sinar matahari (solar shading), perlindungan dari silau (glare) dan mengarahkan daylight.
Light shelf adalah salah satu strategi teknik pemanfaatan energi alami dan pasif pada
konteks daylighting, yang didesain untuk membayangi dan memantulkan cahaya pada
permukaan atasnya dan untuk meminimalisir silau dari langit (Daylighting application
guides, hal.4 -9). Karakteristik light shelf adalah merupakan komponen elemen arsitektural
dari desain daylighting berbentuk bidang yang diletakkan di atas jendela dengan berorientasi
pada posisi matahari. Berfungsi untuk overhang/shading, memantulkan cahaya matahari ke
langit-langit kemudian didistribusikan ke dalam ruangan sehingga cahaya tidak langsung
(indirect lighting), dalam ruangan, meminimalisir silau (glare) dan memudar (fading), panas,
meningkatkan level illuminansi dan keseragaman (uniformity).
Parameter kenyamanan pencahayaan dalam ruang kelas adalah terpenuhinya tingkat
pencahayaan horizontal untuk tugas visual membaca yaitu 200 lux-500 lux pada bidang
kerja, tidak menimbulkan kegelapan, kecerahan, dan kesilauan, (Hardjanto, 2008)
Dialux© adalah Engineering software yang berasal dari Jerman yang merupakan
software untuk kalkulasi layout pencahayaan. Kelebihan dari software ini adalah tidak hanya
mengandalkan dari sisi Engineer, namun juga dari sisi visualisasi. Simulasi Dialux© dapat
dilakukan menggunakan lampu yang benar – benar tersedia pada industri lampu dunia
sehingga hasil kalkulasi dan rendering akan menyerupai dengan keadaan yang sebenarnya.






2.3 Hipotesis
Dimensii light shelf yang semakin panjang, sudut semakin besar, dan ketinggian
makin rendah belum tentu memberikan hasil nilai illuminansi distribusi daylight paling
optimal.



BAB III
METODOLOGI PENELITIAN


3.1 Tempat dan Waktu Penelitian
Lokasi sebagai input data dalam simulasi adalah di Jakarta dengan letak geografis
106.80 BT -6.20 LS dan waktu +7 jam Greenwich Mean Time (GMT) pada tanggal 23
September 2010 yaitu pada kondisi autumn equinox dimana posisi matahari di atas ekuator.
Waktu digunakan input simulasi utama pada pukul 10.00 WIB.
3.2 Bahan dan Alat Penelitian
Penelitian ini menggunakan peralatan meliputi komputer, perangkat lunak DIAlux©,
AutoCad 2008©, CorelDraw X3©, MS. Office 2007© serta peralatan untuk membuat maket
mock up light shelf. Bahan untuk simulasi berupa data-data input, seperti kondisi
daylighting, dsb sesuai dengan batasan masalah.
3.3 Tata Laksana Penelitian
Penelitiann diawali dengan penentuan variasi light shelf serta batasan masalah dalam
lingkup simulasi dilanjutkan simulasi Dialux©.





















Gambar 1 Diagram alir penelitian






Hasil simulasi berupa data nilai illuminansi akan dianalisis sehingga diperoleh
kombinasi varian light shelf yang paling optimal untuk desain maket dalam bentuk mock up
light shelf.
3.4 Parameter dan Variabel Penelitian
Parameter dibatasi pada lokasi, data light scenes, model ruangan, Maintenance plan
method, Reflektansi permukaan ruang, Bidang kerja (workplane) setinggi 0,8 m dari lantai,
Light shelf dipasang sepanjang lebar jendela yaitu 12 meter dengan ketebalan 0,1 m dan
reflektansi 90% dengan material alumunium; Waktu adalah pada jam 10.00 WIB, Orientasi
0o Tidak ada pencahayaan buatan (luminaire) dalam ruangan dan faktor pengganggu,
Ketinggian ruang dari permukaan tanah 16 meter, Ground elemen dengan tingkat reflektansi
nol. Variabel yang disimulasikan meliputi dimensi light shelf interior (6 varian yaitu Light
shelf dengan dimensi 0 m; 0,3m; 0,6 m; 0,9m; 1,2 m; dan 1,5 m); sudut light shelf interior (4
varian yaitu light shelf dengan sudut 0o, 5o, 10o, dan 15o) dan ketinggian pemasangan light
shelf (5 varian yaitu light shelf dengan tinggi 2,0 m; 2,1 m; 2,1 m; 2,3 m; dan 2,4 m dari
permukaan lantai).
3.5 Analisis
Analisis berdasarkan kriteria optimal light shelf yaitu nilai illuminansi pada bidang
kerja yang memenuhi standar pencahayaan ruang kantor yaitu 200-500 lux, analisis
kuantitatif berdasarkan eror, standar deviasi atau pola penyebaran, dan nilai keseragaman
(uniformity) pada bidang kerja, dengan rumus sebagai berikut:
3.6 Desain Prototype Maket (Mock Up) Light Shelf
Maket (mock up) light shelf merupakan model prototype rekomendasi light shelf
berdasarkan hasil penelitian dengan perbandingan 1:2 kali massa sesungguhnya.










Gambar 2 model ruang simulasi, desain dan maket (mock up) light shelf






BAB IV
HASIL DAN PEMBAHASAN


Sesuai dengan metode analisis penelitian yaitu analisis perbandingan grafik dan tabel
nilai-nilai illuminansi di beberapa titik kritis. Kemudian analisis nilai error, standar deviasi,
dan uniformity dengan data hasil perhitungan pada tabel.




H




Gambar potongan model ruangan simulasi dengan dimensi 12x12 m
Keterangan :
a = light shelf eksterior dimension
b = light shelf interior dimension
H = light shelf height
h = window height
x = clerestory window height (2-h)
Rc = ceiling reflectance (ceiling)
Rw = wall reflectance (wall)
Rf = floor reflectance (floor)

Data hasil penelitian diperoleh dari hasil kalkulasi perangkat lunak Dialux© berupa
data nilai illuminansi dalam satuan Lux pada titik-titik pada 3 (tiga) bidang yang diteliti yaitu
bidang langit-langit (ceiling), bidang kerja (workplane) dan bidang lantai (floor). Namun,
analisis akan lebih difokuskan pada bidang kerja karena aktivitas kerja di ruangan kantor
sebagian besar dilakukan pada bidang ini.


4.1 Berdasarkan Variabel Dimensi Light Shelf
Penelitian untuk variasi dimensi light shelf interior menunjukkan bahwa penggunaan
light shelf pada ruangan dapat meningkatkan distribusi cahaya lebih merata di bidang kerja
dibandingkan tanpa light shelf. Secara umum, semakin besar dimensi light shelf interior
maka nilai illuminansi semakin rendah dan distribusi daylight lebih merata sehingga
meningkatkan kenyamanan visual. Nilai illuminansi pada varian dimensi 0,9 m dan 1,2 m
paling banyak memenuhi standar pencahayaan 200-500 Lux.

















Gambar 4.1 Nilai illuminansi pada bidang kerja (workplane) untuk variasi dimensi light shelf
Berdasarkan data hasil analisis nilai error, standar deviasi dan uniformity, terlihat
bahwa dimensi 1,5 m adalah paling optimal karena pola penyebaran nilai illuminansi paling
homogen dan paling mendekati nilai ideal pencahayaan kantor 300 lux. Namun, berdasarkan
nilai uniformity, varian dimensi 1,2 m memiliki nilai illuminansi pada daerah efektif yang
paling seragam.
Tabel 1 Nilai illuminansi variabel dimensi light shelf pada bidang kerja











4.2 Berdasarkan Variabel Sudut Light Shelf
Sudut light shelf merupakan salah satu unsur yang mempengaruhi pola-pola
pemantulan pada bidang light shelf dan langit-langit. Penelitian oleh Danish Building
Research Institute Denmark (DEN) tentang Eksterior light shelf with semi-reflektive surface
di Denmark, menemukan bahwa light shelf konvensional memiliki keterbatasan dalam
pengaplikasian di negara-negara yang berlokasi di lintang tinggi (high-latitude countries)
karena perlu penambahan alat pembayangan (shading devices) sepanjang tahun. Jika
digunakan di iklim yang didominasi kondisi langit berawan (overcast), light shelf harus
diposisikan miring. Sesuai SNI 03-2396-2001, sebagai Langit Perancangan di Indonesia
ditetapkan langit biru tanpa awan atau langit yang seluruhnya tertutup awan abu-abu putih.
Dalam penelitian ini digunakan kondisi langit bersih tanpa awan (clear sky) untuk melihat
efek sinar matahari pada light shelf secara maksimal dengan empat varian sudut light shelf
yaitu 0o, 5 o, 10 o dan 15 o.
















Gambar 2 Nilai illuminansi pada bidang kerja (workplane) untuk variasi sudut light shelf
o

kantor yaitu 200-500 lux. Hal ini menunjukkan sudut light shelf interior paling besar belum
tentu memberikan kualitas pencahayaan yang paling baik di bidang kerja (workplane).
Namun hal ini sangat dipengaruhi sudut datang sinar daylight pada waktu atau jam sebagai
data input simulasi.
Tabel 2 Nilai illuminansi variabel sudut light shelf pada bidang kerja










4.3 Berdasarkan Variabel Ketinggian Light Shelf
Posisi peletakan panel light shelf pada jendela sangat mempengaruhi luasan area
jendela sebagai jalan masuk sinar matahari ke dalam ruangan. Dalam buku “Energy
Efficiency manual pada bab control and use of sunlight”, light shelf berguna terutama pada
jendela dengan area kaca (glazing area) yang luas dengan tinggi jendela lebih dari 6,5 kaki
(2,2 meter).
Pencahayaan pada bidang kerja untuk variabel light shelf dipengaruhi oleh luasan
jendela atas (clerestory) dimana sinar matahari masuk kemudian dipantulkan oleh
permukaan atas light shelf ke bidang langit-langit dan diteruskan ke dalam ruangan. Semakin
rendah pemasangan light shelf maka semakin luas area jendela atas sehingga sinar daylight
terpantulkan semakin banyak. Sebaliknya semakin tinggi pemasangan light shelf dapat
memberi peluang masuknya sinar matahari langsung (direct sunlight) ke area workplane
yang berpotensi menimbulkan panas.
















Gambar 3 Nilai illuminansi pada bidang kerja (workplane) untuk variasi ketinggian light shelf
Nilai illuminansi yang memenuhi area 200-500 lux adalah pada jarak 0,25-4,5 meter.
Semakin rendah pemasangan light shelf maka nilai illuminansi semakin rendah dan
distribusi pencahayaan semakin merata yang terlihat dari tingkat kelandaian bentuk kurva.
Namun, H yang terlalu rendah dapat mengganggu aktivitas kerja sehingga dalam penelitian
ini diberi batasan H terendah adalah 2,0 meter.
Tabel 3 Nilai illuminansi variabel ketinggian light shelf pada bidang kerja












Secara umum, analisis pada variasi dimensi light shelf interior, sudut light shelf
interior dan ketinggian posisi light shelf terhadap permukaan lantai memiliki kecenderungan
hampir sama pada bidang langit-langit dan lantai.
Analisis pada bidang langit-langit, semakin panjang dimensi light shelf maka akan
semakin baik tingkat visual pencahayaan dalam ruangan. Semakin besar sudut light shelf
maka nilai illuminansi semakin rendah dan distribusi pencahayaan semakin merata.
Jangkauan penetrasi daylight antara keempat varian sudut tidak terlalu jauh berbeda dan
berkisar pada daerah 2 meter. Daerah efektif pencahayaan adalah 0-8 meter dari ambang
jendela. Berdasarkan ketinggian pemasangan light shelf, pemasangan light shelf paling
rendah dari permukaan lantai memberikan pengaruh terhadap nilai illuminansi yang semakin
merata karena memberikan luasan cukup banyak bagi sinar daylight untuk masuk melalui
jendela atas yang kemudian akan dipantulkan oleh ceiling. Perbandingan ukuran manusia
menurut irisan emas “le Modulator”, tinggi manusia adalah 1,829 m (Neufert, 1991). Varian
H 2,0 m dan paling baik dalam memenuhi standar pencahayaan ruang kantor 200-500 lux.






Daerah efektif pada bidang langit-langit adalah pada kisaran dari ambang jendela sampai
kedalaman 2–2,5m. Analisis nilai illuminansi pada bidang lantai memiliki kecenderungan
hampir sama dengan bidang kerja.
Berdasarkan analisis nilai illuminansi pada bidang kerja (workplane) diperoleh
kisaran daerah efektif rata-rata adalah 6 meter. Sehingga dalam perhitungan nilai eror relatif,
standar deviasi dan uniformity digunakan batas nilai illuminansi dari 0,05 – 6,00 meter.
Untuk variasi sudut light shelf interior, varian sudut 5o memiliki nilai paling optimal
sedangkan untuk variasi ketinggian posisi light shelf (dimensi jendela atas), varian H 2,0 m
memiliki nilai paling optimal.
Tabel 4 Rangkuman nilai error relatif, standar deviasi, dan uniformity






















4.4 Berdasarkan Variabel Waktu
pada variasi waktu, posisi kurva yang berdekatan menunjukkan bahwa nilai
illuminansi pada berbagai varian memiliki nilai yang hampir sama kecuali pada waktu pukul
08.00 pagi. Kurva pada pukul 10.00 memiliki nilai illuminansi di tengah-tengah dari
berbagai varian sehingga diasumsikan dapat mewakili varian waktu yang lain.






BAB V
KESIMPULAN, SARAN
5.1 Kesimpulan
Fungsi light shelf sebagai pembayangan (shading), meningkatkan distribusi cahaya
dalam ruangan, meminimalisir silau (glare), panas dan memudar (fading), meningkatkan
level illuminansi dan uniformity dipengaruhi oleh dimensi dan sudut light shelf serta posisi
ketinggian light shelf atau luasan jendela atas untuk pemasukan cahaya daylight. Dalam
penelitian ini tidak diperhitungkan faktor lain di luar pencahayaan seperti termal dan kondisi
langit cerah tanpa awan (clear sky). Terkait dengan gerakan green building di kota-kota
besar, light shelf merupakan salah satu strategi pencahayaan alami yang mudah dan murah
dengan penggunaan material yang cukup “green” atau ramah lingkungan seperti Aluminium.
Hasil penelitian menunjukkan bahwa desain light shelf yang paling efektif adalah
pada dimensi 1,2 meter, sudut 5o dan ketinggian 2,0 meter atau dimensi jendela atas 0,8 m.
Variabel yang paling berpengaruh adalah tinggi jendela atas atau ketinggian pemasangan
light shelf diikuti sudut dan dimensi light shelf. Desain light shelf yang direkomendasikan
adalah dimensi antara 0,9 – 1,2 m, sudut 0o-5o, dan ketinggian 2,0 meter atau dimensi jendela
atas 0,8 m. Daerah efektif rata-rata di bidang kerja(workplane) dimana terlihat pengaruh
light shelf terhadap kedalaman distribusi cahaya matahari adalah jarak 0-6 meter dari
jendela.
5.2 Saran
Adapun saran yang diperoleh dari penelitian ini adalah: tentang batasan ruang
lingkup meliputi data input dan desain model harus spesifik disimulasikan dengan software
yang teruji validitasnya; perlu diperhatikan faktor-faktor eksternal (obstruction) dalam
kalkulasi serta dilakukan perbandingan dengan uji keadaan sebenarnya.


DAFTAR PUSTAKA
Abdulmohsen, Abdullah, Boyer, Lester L., Degelman, Larry O. 1994. Evaluation of Lighshelf Daylighting
Systems for Office Buildings in Hot Climates. Texas: Texas A&M University College Station.
Angus, Roderick Charles B.Eng. 1995. Daylight Illuminance Modeling for The United Kingdom and Europe.
UK: Napier University.
Anonim. 01/05/2011. Dialux The Software Standard for Calculating Lighting Layouts: user manual.
http://www.dial.de.
Anonim. 01/11/2009. Interior Project: Modeling in Dialux. http://gitalistia.wordpress.com.
Ariatsyah, Ardian. 2007. Optimasi Desain Selubung Bangunan Kantor terhadap Kenyamanan Visual
Penerangan Alami. Thesis. Surabaya: Institut Teknologi Sepuluh Nopember.
Astawa, Ketut S. 01/11/2009. Pemanasan Global dan Konsep Rumah Hemat Energi.
http://www.energiterbarukan.net.
Boyce, Peter, Hunter, Claudia, Howlett, Owen. 2003. The Benefit of Daylight through Windows. New York:
Lighting Research Center Rensselaer Polytechnic Institute Troy.






Dubin, Fred S. & Long, Chalmers G Jr. 1978. Energy Conservation Standards for Building Design,
Construction and Operation. New York: Mc Graw-Hill Book Company.
Freewan, Ahmed A. 2009. Maximizing The Lightshelf Performance By Interaction Between Lightshelf
Geometries and A Curved Ceiling. Jordan; Jordan University of Science and Technology.
Gochenour, Sharon J. & Andersen, Marilyne. 2009. Circadian Effects of daylighting in a Residential
Environment. Istanbul.
Hyde, Richard & Pedrini, Aldomar. 1996. An Energy Conservation Architectural Design Tool for warm
Climate (LTV) : The tool development and testing. Australia: Australian Research Council.
Karlen, Marka & Benya, James R. 2004. Lighting Design Basic. New Jersey: John Wiley & Sons, Inc.
Kasfy, Muhammad. 2008. Evaluasi Tata Cahaya di Masjid Al-Hayat Pondok Pesantren Al-Zaytun, Indramayu.
Skripsi. Bandung: Institut Teknologi Bandung.
Kementerian Energi dan Sumber Daya Mineral Republik Indonesia. 2005. Blueprint Pengelolaan Energi
Nasional 2005-2025. Jakarta.
Kim, S.Y. & Kim, J.J. 2007. 01/11/2009. The Effect of fluctuating Illuminance on visual sensation in a Small
Office. Indoor and Built Environment. http://www.sagepublications.com.
Lauring, Michael & Marsh, Rob. 2009. Architecture & Energy Strtaegies for a Changing Climate. Denmark:
Aalborg University.
Mardaljevic, John, PhD. 2008. Climate-Based Daylight Analysis. UK: Institute of Energy and Sustainable
Development De Montfort University.
Mardaljevic, John, PhD. 1999. Daylight Simulation: Validations, Sky Models and Daylight Coefficients. UK:
Institute of Energy and Sustainable Development De Montfort University.
Onai, Toshio & Oki, Masato. 2001. Daylight Factor Distribution in Interior based upon the Mean Sky. Japan;
Ashikaga Institute of Technology.
Pears, Alan. 1998. Strategic Study of household Energy and Greenhouse Issues. Australia: Sustainable
Solutions Pty Ltd.
Peraturan Gubernur Provinsi Daerah Khusus Ibukota Jakarta Nomor 33 Tahun 2008 tentang Pelaksanaan
Penghematan Energi di Lingkungan Pemerintah Provinsi Daerah Khusus Ibukota Jakarta.
Phelan, John. 2002. Commissioning Lighting Control Systems for Daylighting Applications. Colorado:
Architectural energy Corporation.
Phillips, Derek. 2004. Daylighting: Natural Light in Architecture. Oxford: Architectural Press Butterworth-
Heinemann, Linacre House, Jordan Hill.
Phillips, Derek. 2000. Lighting Modern Buildings. Oxford: Architectural Press Butterworth-Heinemann,
Linacre House, Jordan Hill.
Pereira de Castro, Eduardo B. & Gonçalves Bastos, Leopoldo Eurico. 1997. Quick Determination of Daylight
and Irradiance in a Room with Lightshelf and Its Application to a Hot Humid Climate. Brazil:
Universidade Federal de Juiz de Fora, Universidade Federal do Rio de Janeiro.
Paramita, Pradnya. 2008. Studi Penyilauan dari Bidang Mihrab pada Kegiatan Ceramah di dalam Masjid.
Skripsi. Bandung: Institut Teknologi Bandung.
Plante, Russel H. 1983. Solar Domestic Hot Water; Practical Guide to Installation and Understanding. Jhon
Wiley & Sons, Inc.
Satwiko, Prasasto. 2004. Fisika Bangunan 1. Yogyakarta: Penerbit ANDI.
Sellors, J., Nijnatten, P.A. van, Sanotra, P. 2008. Measuring the Daylight, Solar Energy and Thermal Radiation
Properties of Coated Glazing. Netherlands: International Conference on Coatings on Glass and Plastic.
Shekari, S. & Golmohammadi, R. 2010. Ergonomic and Economic daylight for Workplaces in Iran. Iran:
Hamadan University of Medical Sciences.
Simons, R. H. & Bean, A. R. 2001. Lighting Engineering Applied Calculations. Cornwall: MPG Books Ltd.
SNI 03-6197-2000. Konservasi Energi Pada Sistem Pencahayaan.
SNI 03-2396-2001. Tata Cara Perancangan Sistem Pencahayaan Alami pada Bangunan Gedung.
Stitt, Fred A. 1999. Ecological Design Handbook : Sustainable Strategies for Architecture, Landscape
Architecture, Interior Design, and Planning. New York : Mc Graw-Hill Companies.
Tregenza, Peter & Loe, David. 1998. Design of Lighting. Taylor & Francis Routledge.
Undang-Undang Republik Indonesia No. 28 Tahun 2002 tentang Bangunan Gedung.
Woolley, Tom & Kimmins, Sam. 2000. Green Building Handbook. New York: Spon Press.

Pradipta, Norma - Personal Name
Suryabrata, Jatmika Adi - Personal Name
Ridwan, Kholid - Personal Name
Juni 2011
R 153.43 Pra o c.1 06.2011
153.43
Thesis
Indonesia
Magister Teknik Sistem FT UGM
2011
Yogyakarta
xvii, 105 hlm.; ilus.; 29 cm.
Disertai CD
LOADING LIST...
LOADING LIST...